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Abstract
This work aims at the extension of the power series in R and ln R of interaction
energy k and separation constant A for the system of two protons and one
electron in the Born–Oppenheimer approximation. The wave equation is
separated into confocal elliptic coordinates, in order to obtain two one-
dimensional problems. The approach that we present here is based upon
our previous calculations, where a relation between A and k for the (outer)
ξ -equation was obtained in two different but substantially equivalent ways:
either by an integral equation representation of the solution or by a logarithmic-
perturbative expansion, in powers of the energy difference k, from the united
atom state. At variance with our previous work, we make use of the (inner)
η-equation of a remarkably simple determinantal equation proposed long ago
by Hylleraas for which we develop a recursive method of calculation. By
combining the two procedures we obtain the solution of the problem by solving
for the coefficients of the R and ln R expansion. We calculate in this way
coefficients up to O(R7) and show how higher order coefficients may be
evaluated recursively.

PACS number: 31.15.−p

1. Introduction

The short-range interaction energy for the hydrogen molecular ion H+
2, up to the united atom

He+, is difficult to evaluate numerically because of the instabilities of the potential energy
function in the vicinity of the attractive centres. Available numerical computations [1, 2] do
not go beyond 0.1 au for the gerade ground state. It results in the need for precise analytical
calculations of the electronic interaction energy which should be valuable in the very short
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range of internuclear separations, while at the same time giving reliable results in the region
of the chemical bond, which is at about 2 au of distance.

There have been several attempts to expand the potential energy of two protons bound
by an electron in powers of their distance R, either by solving secular determinantal
equations [3, 4] or by united atom symmetry-adapted perturbation theories [5, 6] or by
fluctuation theory techniques [7] applied to wavefunction symmetrization. Most of these
studies make use of variable separation in confocal elliptic (spheroidal) coordinates. The
usefulness of these approaches is however limited by their range of validity, which does not
exceed a few tenths of atomic units. For these reasons, we attempt here to extend the range
of applicability of the calculations by adding higher powers of R in the expansion of the
electronic interaction energy and separation constant (see section 2). We do this by combining
the Hylleraas determinantal method [3] for solving the inner equation (equation (1.1′) and
section 3) with our integral equation method for the outer equation (equation (1.1), see
section 4).

Moreover, it will be shown in section 5 that this method for obtaining a dispersion relation
between separation constant and energy is equivalent to an even simpler perturbative JWKB
method, which is therefore able to replace the Hylleraas determinantal approach for the outer
problem, which appears awkward to solve. This is so because the outer equation does not
involve symmetrization of the wavefunction (wf ), which is therefore required only to satisfy
the regularity conditions (see section 6). The required symmetry is therefore imposed through
the inner determinantal equation, for which we found a recursive method of finding a solution
(see the appendix).

By combining both the dispersion relations obtained from the regularity conditions
imposed upon the solution of the outer equation, and from the Hylleraas determinantal secular
equation for the inner equation, the expansion of the electronic interaction energy in powers
of R is found in section 7 up to O(R7).

We summarize here the basic equations and the formalism that has been used in order
to obtain their solution. The quantum mechanical wave equation for an electron in the static
electric potential field of two protons separated by a distance R may be separated into the
usual spheroidal coordinates ξ (1 � ξ < +∞), η (−1 � η � 1) and φ (0 � φ � 2π) [7–9];
equations in these variables are

d

dξ

[
(ξ 2 − 1)

dX

dξ

]
+

(
ER2

2
ξ 2 + 2Rξ + A − �2

ξ 2 − 1

)
X(ξ) = 0 (1.1)

d

dη

[
(1 − η2)

dY

dη

]
−

(
ER2

2
η2 + A +

�2

1 − η2

)
Y (η) = 0. (1.1′)

From [8] it can be realized that equation (1.1) is exactly the same as that for the system
in which the whole charge is concentrated in one of the foci of the ellipse. In equations (1.1)
and (1.1′), �2 and A are separation constants, and E (the energy) is assumed to be negative,
which corresponds to bound states.

Following [4], we shall occasionally refer to the ξ -equation as the outer equation, and to
the η-equation as the inner equation. By the variable transformation,

ξ = tanh f, η = tanh g (1.2)

where f is complex valued with constant imaginary part in the whole range of variation of
ξ , while g is real, one can recast the two equations (for � = 0) into the following Hermitian
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form:

d2X

df 2
=

(
ER2

2

sinh2 f

cosh4 f
+ 2R

sinh f

cosh3 f
+

A

cosh2 f

)
X(tanh f ) (1.3)

d2Y

dg2
=

(
ER2

2

sinh2 g

cosh4 g
+

A

cosh2 g

)
Y (tanh g). (1.3′)

The quantities in parentheses are twice the potential energies 1
2�e(f ), 1

2εe(g) of each
one-dimensional problem. εe(g) changes from the profile of a symmetrical double-well for
positive real A to a single-well for real negative A. We use the subscript e to denote a special
solution of equations (1.1) and (1.1′), which has been constructed perturbatively from the
united atom solution, that is, a particular solution of the polarization equations which is not
however the polarization function itself, because this is endowed with the proper boundary
conditions that ensure convergence towards a state of symmetry required by the Hamiltonian
operator [10–13]. Consequently, by taking as starting point the He+ ground state, we have

X(0)
e (ξ) = e−Rξ (1.4)

Y (0)
e (η) = e−Rη (1.4′)

X(j)
e (ξ) = exp

{
iϕ(0)

e (ξ) + iϕ(1)
e (ξ) + · · · + iϕ(j)

e (ξ)
}

(1.5)

Y (j)
e (η) = exp

{
iψ(0)

e (η) + iψ(1)
e (η) + · · · + iψ(j)

e (η)
}
. (1.5′)

The ϕ
(j)
e (ξ), ψ

(j)
e (η) are the perturbative solutions of order j for the action ϕe(ξ), ψe(η)

relative to equations (1.1) and (1.1′). Then

p(j)
e (ξ) = dϕ

(j)
e

df
= (1 − ξ 2)

dϕ
(j)
e

dξ
(1.6)

q(j)
e (η) = dψ

(j)
e

dg
= (1 − η2)

dψ
(j)
e

dη
. (1.6′)

2. Expansion of the constant A as a function of k up to terms O(k3)

Recall that

k = Ee − Ek (2.1)

where Ee is the energy of the reference state, Ek is the energy of the physical state that we are
aiming to calculate. Thus, we are led to evaluate the expansion coefficients of

Ak = Ae + ak + bk2 + ck3 + · · · (2.2)

having assumed the constant Ak to be analytical as a function of the energy difference k. This
is a kind of dispersion relation, which holds between the coefficients of the outer differential
equation, originating from the regularity conditions that the solutions must satisfy. A similar
relation holds for the inner equation (see section 3). In our method [7, 9, 14], the boundary
conditions are introduced through the formal solutions obtained from the iterative expansions
of the integral equations, which solve equations (1.1) and (1.1′).
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3. Hylleraas method

Hylleraas [3] has deduced from the inner equation the following expansion, referring to the
ground state with even parity (see the appendix, equation (A15)):

A00 = −Ak = −C

3
− 2

135
C2 − 4

8505
C3 + · · · . (3.1)

Recalling that, in atomic units,

C = p2 = −1

2
ER2 = −1

2
(Ee − k)R2 =

(
1 +

k

2

)
R2 (3.2)

upon substituting C from (3.2) into (3.1) the following is obtained,

Ak =
(

1

3
R2 +

2

135
R4 +

4

8505
R6

)
+

(
1

6
R2 +

2

135
R4 +

6

8505
R6

)
k

+

(
1

210
R4 +

3

8505
R6

)
k2 +

1

17 010
R6k3 + O(R8) (3.3)

which is the dispersion relation for the inner equation obtained by Hylleraas from the infinite
determinantal equation arising from the expansion in associated Legendre polynomials. A
similar determinant was introduced by Hylleraas for solving the outer equation, which could
yield a similar dispersion relation involving A and E. However, in this case, the off-diagonal
elements of that determinant are not all infinitesimal as R → 0 (or R → ∞), consequently, we
decided to obtain the dispersion relation for the outer equation after representing the solution
either by an integral expansion satisfying boundary conditions (section 4), or by a perturbative
expansion of the action ϕ(ξ ), which is a sort of JWKB expansion [10] (see sections 5 and 6).

4. Evaluation of coefficients a, b, c from the outer equation with boundary conditions

Since the principles of our approach have been discussed to some extent in [7, 9, 14], we only
need to recall here equation (8.1) of [9] or, more generally, equation (27) of [7]. Therefore,
we use the integrability condition∫ ∞

1
dy

[
k
R2

2
y2 − (Ak − Ae)

]
Xe(y)Xk(y) = 0 (4.1)

writing

k =
∞∑

j=0

µjk(j) (4.2)

Xk(ξ) = Xe(ξ) +
∞∑

j=1

µjX
(j)

k (ξ). (4.2′)

On substituting equations (4.2) and (4.2′) into equation (4.1) and separating the orders in
µ, an equation is deduced for each coefficient a, b, c, . . . of equation (2.2):∫ ∞

1
dy

(
k(1) R

2

2
y2Xe(y)2 − ak(1)Xe(y)2

)
= 0 (4.3a)

∫ ∞

1
dy

(
k(2) R

2

2
y2Xe(y)2 − ak(2)Xe(y)2

)
+

∫ ∞

1
dy

(
k(1) R

2

2
y2Xe(y)X

(1)
k (y)

− ak(1)Xe(y)X
(1)
k (y)

)
−

∫ ∞

1
dy b(k(1))2Xe(y)2 = 0. (4.3b)
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The first integral vanishes because of (4.3a), so we obtain an equation for the coefficient
b. Moreover,∫ ∞

1
dy

(
k(3) R

2

2
y2Xe(y)2 − ak(3)Xe(y)2

)

+
∫ ∞

1
dy

(
k(2) R

2

2
y2Xe(y)X

(1)
k (y) − ak(2)Xe(y)X

(1)
k (y)

)

+
∫ ∞

1
dy

(
k(1) R

2

2
y2Xe(y)X

(2)
k (y) − ak(1)Xe(y)X

(2)
k (y)

)

−
∫ ∞

1
dy(c(k(1))3 + 2bk(1)k(2))Xe(y)2

−
∫ ∞

1
dy b(k(1))2Xe(y)X

(1)
k (y) = 0. (4.3c)

Upon substituting from equations (4.3a) and (4.3b) it is finally obtained that∫ ∞

1
dy

(
R2

2
y2 − a

)
Xe(y)X

(2)
k (y) −

∫ ∞

1
dy bk(1)Xe(y)X

(1)
k (y)

−
∫ ∞

1
dy(c(k(1))2 + bk(2))Xe(y)2 = 0. (4.3′c)

It is now recalled from [7, 9] that the X
(j)

k (ξ) are defined by iterating equation (5.1) below, using
equations (2.2) and (4.2), and subsequently separating the orders in the variable µ. Therefore,
by further introducing the complete expressions for X

(1)
k (y) and X

(2)
k (y), the variables k(j) can

be eliminated from the equations so as to obtain, after dividing by (k(1))2, an equation which
is solvable for the coefficient c:

c

∫ ∞

1
dy Xe(y)2 =

∫ ∞

1
dy

(
R2

2
y2 − a

)
Xe(y)2

∫ y

1

dx

(1 − x2)Xe(x)2

×
∫ ∞

x

dz

(
R2

2
z2 − a

)
Xe(z)

2
∫ z

1

du

(1 − u2)Xe(u)2

×
∫ ∞

u

dv

(
R2

2
v2 − a

)
Xe(v)2 − b

∫ ∞

1
dy

(
R2

2
y2 − a

)
Xe(y)2

×
∫ y

1

dx

(1 − x2)Xe(x)2

∫ ∞

x

dz Xe(z)
2 − b

∫ ∞

1
dyXe(y)2

×
∫ y

1

dx

(1 − x2)Xe(x)2

∫ ∞

x

dz

(
R2

2
z2 − a

)
Xe(z)

2. (4.4)

The two expressions multiplying the coefficient b are seen to be equal by inverting the order
of integration.

After somewhat lengthy calculations it is therefore obtained that

c = − 3

64
R +

11

128
+

R

4

(
R − 1

2

)
e4RE1(4R)

+
R

8
e8RE1(4R)2 − R

8
e4R

∫ ∞

1
dx

E1(2R(1 + x))

1 + x
(4.5)

while we recall from [7] that

a = 1

2

(
R2 + R +

1

2

)
, b = − R

16
− 5

32
+

R

4
e4RE1(4R). (4.6)
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5. The relationship between boundary conditions

We proceed now to elucidate the connection between the method of section 4 and the
perturbative method which is shown below (see also section 6). Writing

Xk(ξ) = Xe(ξ)

[
1 + k

∫ ξ

1

dx

(1 − x2)Xe(x)2

∫ ∞

x

dy Xe(y)Xk(y)

(
R2

2
y2 − Ak − Ae

k

)]
(5.1)

iϕk(ξ) = ln Xk(ξ) (5.2)

it follows, from equations (5.1) and (5.2), that

ipk(ξ) = d

df
iϕk(ξ) = (1 − ξ 2)

d

dξ
iϕk(ξ) (5.2′)

ipk(ξ) = ipe(ξ) +
k

Xe(ξ)2

∫ ∞
ξ

dy Xe(y)Xk(y)
(

R2

2 y2 − Ak−Ae

k

)
1 + k

∫ ξ

1
dx

(1−x2)Xe(x)2

∫ ∞
x

dy Xe(y)Xk(y)
(

R2

2 y2 − Ak−Ae

k

) . (5.3)

Therefore condition (4.1) with vanishing pe(1) implies that

pk(1) = 0. (5.4)

This condition suffices to evaluate Ak to all orders in k.
We can prove now by a perturbative calculation that the expansion

ipe(ξ) = ip(0)
e (ξ) +

∞∑
n=1

ip(n)
e (ξ) (5.5)

for an arbitrary variation of the parameter E(1)
e from the value of the energy E(0)

e = −2Eh

pertaining to the united atom He+,

E(1)
e = −k, (5.6)

yields the variation of the parameter Ae from the He+ value A(0)
e = R2 as

Ae = R2 +
∞∑

n=1

(
E(1)

e

)n
A(n)

e (5.7)

where the A(n)
e may be calculated from the conditions

p(0)
e (1) = p(1)

e (1) = p(2)
e (1) = · · · = p(n)

e (1) = · · · = 0 (5.8)

lim
ξ→∞

p(n)
e (ξ) e−2Rξ = 0. (5.9)

The unexpected result is found that condition (5.8) can be fulfilled with free A(n)
e , which

are therefore subsequently calculated from the further requirement (5.9). Actually, the proper
behaviour at infinity has been implicitly embodied in equation (5.1) by putting appropriate
extrema to the integrals (see equation (5.3)); in fact, both boundary conditions (5.8) and (5.9)
are needed to fix the value of the constant A.

6. The perturbative solution

From the calculations reported in [8, 9] we find

ip(1)
e = 1

4E(1)
e [R(1 − ξ 2) + 1 − ξ ] (6.1)
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and, for n > 1,

ip(n)
e (ξ) e−2Rξ = ip(n)

e (1) e−2Rξ +
n−1∑
j=1

∫ ξ

1
dζ

p
(j)
e (ζ )p

(n−j)
e (ζ )

1 − ζ 2
e−2Rζ + A(n)

e

(
E(1)

e

)n

∫ ξ

1
dζ e−2Rζ

(6.2)

ip(n)
e (ξ) = −

n−1∑
j=1

∫ ∞

ξ

dζ
p

(j)
e (ζ )p

(n−j)
e (ζ ) e−2R(ζ−ξ)

1 − ζ 2

+
n−1∑
j=1

∫ ∞

1
dζ

p
(j)
e (ζ )p

(n−j)
e (ζ ) e−2R(ζ−1)

1 − ζ 2
. (6.3)

Results thus obtained are

ip(2)
e (ξ) = 1

16

(
E(1)

e

)2
[
R

2
(1 − ξ 2) +

3

2
(1 − ξ) + 2e2R(1+ξ)E1(2R(1 + ξ)) − 2e4RE1(4R)

]
(6.4)

ip(3)
e (ξ) = 1

32

(
E(1)

e

)3
[
R

4
(1 − ξ 2) +

5

4
(1 − ξ) + (3 − 2R(1 + ξ))E1(2R(1 + ξ)) e2R(1+ξ)

− (3 − 4R)E1(4R) e4R + 2e8RE1(4R)2 − 2e4RE1(4R) e2R(1+ξ)E– 1(2R(1 + ξ))

+ e2R(1+ξ)

∫ ∞

ξ

dx
E1(2R(1 + x))

1 + x
− 2e4R

∫ ∞

1
dx

E1(2R(1 + x))

1 + x

]
. (6.5)

By the same tool the coefficients A(1)
e , A(2)

e , A(3)
e are calculated, and are consistent with

the results obtained from equation (4.1) (see [7, 9]).

7. Expansion coefficients a, b, c and interaction energy in powers of R

The coefficients a, b, c . . . thus obtained are exact to all orders in R, which is not true for those
calculated from the Hylleraas method. Here their expansion in powers of R is however needed
for calculation purpose. To this end, we expand the coefficients b and c in equation (2.2)
in powers of the variables R and ln R by first expanding the function

e4RE1(4R) = −γ − ln 4R + (1 − γ )4R − 4R ln 4R +
(

3
2 − γ

)
8R2 − 8R2 ln 4R + o(R2).

(7.1)

The term represented by an integral may be expanded in the following manner by
integrations by parts, so as to extract the logarithmic divergence from the integral sign:∫ ∞

1
dx

E1(2R(1 + x))

1 + x
=

∫ ∞

2R

dα
E1(2α)

α

= −ln 2RE1(4R) − 1

2
(ln 2R)2 e−4R +

∫ ∞

2R

dα(ln α)2 e−2α. (7.2)

Then we have ∫ ∞

2R

dα(ln α)2 e−2α =
∫ ∞

0
dα(ln α)2 e−2α + o(1). (7.3)
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Next we expand the interaction energy given by equation (2.1),

k = k2R
2 + k3R

3 + k4R
4 + k5R

5 + · · · (7.4)

where the coefficients kj up to j = 5 have been evaluated in [7] (see also [4]). Equating now
the expansion of the constant A[k(R)] in powers of R and ln R obtained from equations (3.1),
(3.2) and (7.4) according to Hylleraas calculations, with that we have deduced from the outer
equation with boundary conditions (equations (2.2), (4.5), (4.6), (7.4) and [7]), we obtain the
following equation, where only those terms have been retained which bear a factor R6 or R7:

4

8505
R6 +

1

6
R2(k4R

4 + k5R
5) +

2

135
R4(k2R

2 + k3R
3)

= 1

2
R2(k4R

4 + k5R
5) +

1

2
R(k5R

5 + k6R
6) +

1

4
(k6R

6 + k7R
7)

− R

16
(2k2k3R

5 + ((k3)
2 + 2k2k4)R

6) − 5

32
(((k3)

2 + 2k2k4)R
6

+ 2(k2k5 + k3k4)R
7) − R

4
(γ + ln 4R)(2k2k3R

5 + ((k3)
2 + 2k2k4)R

6)

+ R2(1 − γ − ln 4R)((k2)
2R4 + 2k2k3R

5) + R3(3 − 2γ − 2 ln 4R)(k2)
2R4

+
11

128
((k2)

3R6 + 3(k2)
2k3R

7) +
1

16
R

[
−3

4
+ 2γ + 2 ln 4R + 2(γ + ln 4R)2

− 2 ln 2R(γ + ln 4R) + (ln 2R)2 − 2
∫ ∞

0
dα(ln α)2 e−2α

]
(k2)

3R6. (7.5)

By solving equation (7.5) for the coefficients of the terms proportional to R6 and R7 it is
obtained that

k6 = 16

8505
− 4

3
k4 +

8

135
k2 − 2κ5 +

1

2
k2k3 − 4(k2)

2 − 11

32
(k2)

3 +
5

8
((k3)

2 + 2k2k4)

+

(
−128

9
+ 2k2k3 + 4(k2)

2

)
(γ + ln 4R) = 310 816

8505
− 128

9
(γ + ln 4R) (7.6)

k7 = − 32

8505
− 16

135
k2 +

8

135
k3 +

8

3
k4 +

8

3
κ5 − 4k2

2 − 9k2k3

− k2
3 − 2k2k4 +

5

4
(k2κ5 + k3k4) +

7

8
(k2)

3 − 33

32
k2

2k3

+

(
512

27
+

80

9
k2 + 4k2k3 + (k3)

2 + 2k2k4 − 1

2
(k2)

3

)
(γ + ln 4R)

−
(

1

2
(γ + ln 4R)2 +

1

4
(ln 2R)2 − 1

2
ln 2R(γ + ln 4R)

− 1

2

∫ ∞

0
dα e−2α(ln α)2

)
(k2)

3 = −87 392

8505
− 3968

405
(γ + ln 4R)

+
256

27

[
(γ + ln 4R)2 +

1

2
(ln 2R)2 − ln 2R(γ + ln 4R)

]

− 128

27

[
π2

6
+ (γ + ln 2)2

]
(7.7)

where the rational numerical part of kj has been renamed κ j, and γ is the Euler constant [15]:

γ = −
∫ ∞

0
e−t ln t dt .
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8. Summary and conclusions

In this paper, the expansion of the separation constant in powers of the internuclear distance R
has been calculated for the system of two fixed protons interacting through a single electron.
The potential energy which is effective for the electron motion depends upon energy E and
separation constant A, which are therefore required to satisfy the conditions of stability of the
motion.

These conditions are expressed through two relations between E and A, one for each
equation that the motion is bound to satisfy on a plane (the rotational motion around the
internuclear axis is separated out).

In order to formulate the desired stability conditions for the two-centre problem, the
one-centre wf of this problem is taken as a starting point, from which a two-centre reference
state, denoted by the subscript e, is constructed through the calculation of its wf �e(ξ, η), by
a JWKB expansion [10, 16].

The stability conditions on the wf are now translated into three different but largely
equivalent schemes:

(i) By expansion of the wf �e(ξ, η) in a suitable united atom basis, each differential equation
is recast into the form of an infinite linear system whose unknowns are the coefficients,
whose determinant is put equal to zero.

(ii) The reference state �e(ξ, η) = Xe(ξ)Ye(η), which is a solution of equations (1.1)
and (1.1′), is allowed to vary at will, with free parameters Ee and Ae, therefore the
physical state �k(ξ, η) is constructed by iterative solution of an integral equation,
whose kernel contains �e. In order that the method be effective, �e should be a
tight approximation to �k so as to ensure rapid convergence of the iteration procedure.
So it is required that �k(ξ, η) → �e(ξ, η) locally as R → 0. The stability
requirements (boundary conditions and symmetry) are then translated into integral
conditions.

(iii) The proper behaviour may be required on the function �e(ξ, η) by imposing appropriate
relations among the parameters entering into it: in this case, �e(ξ, η) is the required
solution. This approach works satisfactorily on the outer equation (see sections 5 and 6),
and it has been proved above to be entirely equivalent to the integral method. It does
not appear to have been used for the inner equation, except in Rayleigh–Schroedinger
perturbation theory, which requires an infinite-order summation so as to obtain the desired
symmetry properties (see, however, [16]).

While in previous works [7, 9, 14] the present authors preferred method (ii) for the
purpose of testing its potentialities, in the present study this is only retained to calibrate the
outer equation, but in parallel conjunction with method (iii), which appears by far the most
expeditious.

On the other hand, method (i), borrowed from [3], implemented with the calculations
reported in the appendix which allow us to estimate its precision, appears to be the most
efficient for obtaining a dispersion relation from the inner equation.

Calculations along these lines are now in hand in order to obtain higher coefficients in the
expansion of A and E in powers of R.
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Appendix. Evaluation of Hylleraas determinant for the inner equation

Let us consider the matrix ‖di,j‖ where the i, j are integers, i, j � 1, and

di,j = 0, if j �= i, i ± 1. (A1)

Then we denote by Dn,m the cofactor of the element dn,m. The determinantal (secular) equation
is

D0 = det‖di,j‖ = 0, (A2)

therefore upon expanding D0 around the element dn,n according to Kramer’s rule we obtain,
for n > 1,

D0 = dn,nDn,n + dn,n−1Dn,n−1 + dn,n+1Dn,n+1. (A3)

It is now defined as{
D+

n = det‖di,j‖, i, j > n

D−
n = det‖di,j‖, i, j < n

(A4)

{
C+

n = det‖di,j‖ with i > n, j � n, j �= n + 1

C−
n = det‖di,j‖ with i < n, j � n, j �= n − 1.

(A5)

Then it is proved that

D0 = dn,nD
+
nD−

n − dn,n−1D
+
nC−

n − dn,n+1D
−
n C+

n (A6)

D0 = dn,nD
+
nD−

n − dn,n−1dn−1,nD
+
nD−

n−1 − dn,n+1dn+1,nD
+
n+1D

−
n (A6′)

with each term of the rhs of (A6′) being equal to the corresponding term of equation (A3). The
equality of the first rhs terms is almost evident. In order to prove the equality of the second
terms we write the cofactor extensively as

Dn,n−1 = −1 × (A7)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d1,1 d1,2 0 ...........................................................................................................

d2,1 d2,2 d2,3 ...........................................................................................................

0 d3,2 d3,3 ...........................................................................................................

......................................................................................................................................

........................... dn−3,n−4 dn−3,n−3 dn−3,n−2 0 0 0 ............

........................... 0 dn−2,n−3 dn−2,n−2 0 0 0 ............

0 ...................... 0 0 dn−1,n−2 dn−1,n 0 0 ............

0 ...................... 0 0 0 dn+1,n dn+1,n+1 dn+1,n+2 ............

0 ...................... 0 0 0 0 dn+2,n+1 dn+2,n+2 dn+2,n+3

0 ...................... 0 0 0 0 0 dn+3,n+2 dn+3.n+3

0 .................................................................................................................................

......................................................................................................................................

= −dn−1,n×
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d1,1 d1,2 0 ..........................................................................................................

d2,1 d2,2 d2,3 ..........................................................................................................

0 d3,2 d3,3 ..........................................................................................................

0 ................................................................................................................................

0 ............................... dn−3,n−4 dn−3,n−3 dn−3,n−2 0 0 0 .........

0 ............................... 0 dn−2,n−3 dn−2,n−2 0 0 0 .........

0 ............................... 0 0 0 dn+1,n+1 dn+1,n+2 0 .........

0 ............................................... 0 0 dn+2,n+1 dn+2,n+2 dn+2,n+3...

0 ............................................................................... 0 dn+3,n+2 dn+3,n+3....

0 ............................................................................... 0 0 dn+4,n+3...

0 ................................................................................................................................

+ dn+1,n×∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d1,1 d1,2 0 ...........................................................................................................

d2,1 d2,2 d2,3 ...........................................................................................................

0 d3,2 d3,3 ...........................................................................................................

0 ................................................................................................................................

0 .................... dn−3,n−4 dn−3,n−3 dn−3,n−2 0 0 0 ....................

0 .................... 0 dn−2,n−3 dn−2,n−2 0 0 0 ....................

0 .................... 0 0 dn−1,n−2 0 0 0 ....................

0 .................... 0 0 0 dn+2,n+1 dn+2,n+2 dn+2,n+3...............

0 .................... 0 0 0 0 dn+3,n+2 dn+3,n+3 dn+3,n+4

0 .................................................... 0 0 0 dn+4,n+3 dn+4,n+4

0 .................................................................................................. 0 dn+5,n+4

0 .................................................................................................................................

= −dn−1,nD
−
n−1D

+
n .

The second term on the rhs vanishes because of the definition of a determinant, therefore the
result follows from the first term alone. In fact, the following relations can be easily proved,{

C+
n = dn+1,nD

+
n+1

C−
n = dn−1,nD

−
n−1

(A8)

from which the equality of the second terms of equations (A6) and (A3) can be proved. The
equality of the third terms of both equations are proved by a similar procedure.

Other equations have to be proved because they will be needed in the following
developments. They are the following recurrent relations:{

D+
n = dn+1,n+1D

+
n+1 − dn+1,n+2C

+
n+1

D−
n = dn−1,n−1D

−
n−1 − dn−1,n−2C

−
n−1.

(A9)

Now we substitute the first equation (A9) into (A6′) thus obtaining

D0 = (dn,ndn+1,n+1 − dn,n+1dn+1.n)D
+
n+1D

−
n − dn,ndn+1,n+2C

+
n+1D

−
n − dn,n−1dn−1,nD

+
nD−

n−1.

(A10)

Then, upon substituting dn,n into the second term of (A10) from the same equation (A6) with
the condition (A2) for vanishing D0, and using (A8) we have

D0 = (dn,ndn+1,n+1 − dn,n+1dn+1,n)D
+
n+1D

−
n − dn,n+1dn+1,n+2

C+
nC+

n+1D
−
n

D+
n

− dn,n−1dn−1,n

(
D+

n + dn+1,n+2C
+
n+1

)
D−

n−1. (A11)
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Next we use equations (A8) and both equations (A9) in order to substitute into the second and
the third term respectively. This results in

D0 = (dn,ndn+1,n+1 − dn,n+1dn+1,n)D
+
n+1D

−
n − dn,n+1dn+1,ndn+1,n+2dn+2,n+1

D+
n+1D

+
n+2D

−
n

D+
n

− dn,n−1dn−1,ndn+1,n+1D
+
n+1

D−
n + dn−1,n−2C

−
n−1

dn−1,n−1
. (A12)

Then, upon substituting C−
n−1 from equation (A8) we finally obtain the secular equation in the

form

D+
n+1

dn−1,n−1D+
n

[
D+

nD−
n (dn−1,n−1dn,ndn+1,n+1 − dn−1,n−1dn,n+1dn+1,n − dn,n−1dn−1,ndn+1,n+1)

−D+
n+2D

−
n dn−1,n−1dn,n+1dn+1,ndn+1,n+2dn+2,n+1

−D+
nD−

n−2dn+1,n+1dn,n−1dn−1,ndn−1,n−2dn−2,n−1
] = 0. (A13)

The quantity enclosed in square brackets is invariant under the interchange of the plus
and minus signs in superscripts and subscripts as well. The operations that have been done
necessitate that D+

n , as well as dn−1,n−1, do not vanish.
The matrix that Hylleraas [3] has calculated from the inner equation in order to obtain its

eigenvalues, has the form of equation (A1), where the off-diagonal elements are O(R2), while
those in the principal diagonal are O(R0). Consequently, equation (A13) may be written as

D+
n+1D

−
n

dn−1,n−1

∣∣∣∣∣∣
dn−1,n−1 dn−1,n 0
dn,n−1 dn,n dn,n+1

0 dn+1,n dn+1,n+1

∣∣∣∣∣∣ = O(R8) (A14)

which allows us to evaluate the nth eigenvalue to O(R8). A still higher precision is obtained
for the first eigenvalue (n = 1), which may be obtained from the equation∣∣∣∣∣∣

d1,1 d1,2 0
d2,1 d2,2 d2,3

0 d3,2 d3,3

∣∣∣∣∣∣ = d1,2 d2,1 d2,3 d3,2 d3,4 d4,3
D+

4

D+
1

= O(R12) (A15)

from which the root given by equation (3.1) is evaluated up to O(C5).

Note that equation (A13) is still meaningful for small n, because the matrix ‖di,j‖ may be
bordered suitably by the addition of a finite number of rows and columns, such that the value
of the determinant and the off-diagonal properties (A1) are preserved.
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